Kondo physics in non-local metallic spin transport devices.

نویسندگان

  • L O'Brien
  • M J Erickson
  • D Spivak
  • H Ambaye
  • R J Goyette
  • V Lauter
  • P A Crowell
  • C Leighton
چکیده

The non-local spin-valve is pivotal in spintronics, enabling separation of charge and spin currents, disruptive potential applications and the study of pressing problems in the physics of spin injection and relaxation. Primary among these problems is the perplexing non-monotonicity in the temperature-dependent spin accumulation in non-local ferromagnetic/non-magnetic metal structures, where the spin signal decreases at low temperatures. Here we show that this effect is strongly correlated with the ability of the ferromagnetic to form dilute local magnetic moments in the NM. This we achieve by studying a significantly expanded range of ferromagnetic/non-magnetic combinations. We argue that local moments, formed by ferromagnetic/non-magnetic interdiffusion, suppress the injected spin polarization and diffusion length via a manifestation of the Kondo effect, thus explaining all observations. We further show that this suppression can be completely quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable Non-local Spin Control in a Coupled Quantum Dot System. Authors:

Kondo physics e.g., a localized spin interacting with a conduction electron sea in which it is embedded has been a central theme in condensed matter physics for seven decades. The issue of the physics of many localized spins, perhaps on a lattice, interacting with each other as well as with the conduction electrons arose in connection with metallic spin glasses and heavy electron metals. It is ...

متن کامل

Exotic Kondo Effects in Metals: Magnetic Ions in a Crystalline Electric Field and Tunneling Centers

The ordinary single channel Kondo model consists of one or more spin 1/2 local moments interacting antiferromagnetically with conduction electrons in a metal. This model has provided a paradigm for understanding many phenomena of strongly correlated electronic materials, ranging from the formation of heavy fermion fermi liquids to the mapping to a one-band model in the cuprate superconductors. ...

متن کامل

Dynamical symmetries and quantum transport through nanostructures

We discuss the manifestation of dynamical symmetries in quantum transport through nanostructures. The dynamical symmetry SO(4) manifested in the singlet-triplet excitations is shown to be responsible for several exotic effects in nano-devices: non-equilibrium Kondo effect in T-shape Double Quantum Dots, phonon-induced Kondo effect in transition-metal-organic complexes, Kondo shuttling in Nano-E...

متن کامل

Spin- and angle-resolved photoemission on the topological Kondo insulator candidate: SmB6.

Topological Kondo insulators are a new class of topological insulators in which metallic surface states protected by topological invariants reside in the bulk band gap at low temperatures. Unlike other 3D topological insulators, a truly insulating bulk state, which is critical for potential applications in next-generation electronic devices, is guaranteed by many-body effects in the topological...

متن کامل

Gate voltage effects in capacitively coupled quantum dots

– We study a system of two symmetrical capacitively coupled quantum dots, each coupled to its own metallic lead, focusing on its evolution as a function of the gate voltage applied to each dot. Using the numerical renormalization group and poor man’s scaling techniques, the low-energy Kondo scale of the model is shown to vary significantly with the gate voltage, being exponentially small when s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014